Molecular Signatures Of Sexual Communication In The Phlebotomine Sand Flies

PLOS NEGLECTED TROPICAL DISEASES(2020)

引用 7|浏览21
暂无评分
摘要
Phlebotomine sand flies employ an elaborate system of pheromone communication wherein males produce pheromones that attracts other males to leks (thus acting as aggregation pheromone) and females to the lekking males (sex pheromone). In addition, the type of pheromone produced varies among populations. Despite the numerous studies on sand fly chemical communication, little is known of their chemosensory genome. Chemoreceptors interact with chemicals in an organism's environment to elicit essential behaviors such as the identification of suitable mates and food sources, thus, they play important roles during adaptation and speciation. Major chemoreceptor gene families, odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) together detect and discriminate the chemical landscape. Here, we annotated the chemoreceptor repertoire in the genomes of Lutzomyia longipalpis and Phlebotomus papatasi, major phlebotomine vectors in the New World and Old World, respectively. Comparison with other sequenced Diptera revealed a large and unique expansion where over 80% of the similar to 140 ORs belong to a single, taxonomically restricted clade. We next conducted comprehensive analysis of the chemoreceptors in 63 Lu. longipalpis individuals from four different locations in Brazil representing allopatric and sympatric populations and three sex-aggregation pheromone types (chemotypes). Population structure based on single nucleotide polymorphisms (SNPs) and gene copy number in the chemoreceptors corresponded with their putative chemotypes, and corroborate previous studies that identified multiple populations. Our work provides genomic insights into the underlying behavioral evolution of sexual communication in the L. longipalpis species complex in Brazil, and highlights the importance of accounting for the ongoing speciation in central and South American Lutzomyia that could have important implications for vectorial capacity.Author summaryPhlebotomine sand flies are the primary vectors of Leishmania parasites, the causative agents of cutaneous and visceral leishmaniasis. Due to the lack of vaccines, control of leishmaniasis relies upon reducing human exposure to sand flies. Sand flies produce sex-aggregation pheromones that elicit robust olfactory behaviors, and the molecular targets for pheromone detection remain unknown. We identified chemoreceptors in the genomes of L. longipalpis and P. papatasi, and used these gene models to explore chemoreceptor evolution in 63 L. longipalpis individuals representing different pheromone types. These analyses identified genomic loci underlying chemosensory behavior in sand flies. This paves the way for understanding the sand fly species diversity at the molecular level, and functional characterization of these candidate genes will isolate and identify chemostimuli that can directly be tested as potential attractants for odor baited traps.
更多
查看译文
关键词
pheromone,chemoreception,birth-and-death evolution,<italic>Lutzomyia</italic>,<italic>Phlebotomus</italic> genome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要