Author Correction: Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits

NATURE NEUROSCIENCE(2021)

引用 163|浏览12
暂无评分
摘要
Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well established that it depends on pre- and postsynaptic activity. However, models that rely solely on pre- and postsynaptic activity for synaptic changes have, so far, not been able to account for learning complex tasks that demand credit assignment in hierarchical networks. Here we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then pyramidal neurons higher in a hierarchical circuit can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.
更多
查看译文
关键词
Learning algorithms,Sensory processing,Spike-timing-dependent plasticity,Biomedicine,general,Neurosciences,Behavioral Sciences,Biological Techniques,Neurobiology,Animal Genetics and Genomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要