Feasibility analysis of semiconductor voltage nanosensors for neuronal membrane potential sensing

biorxiv(2019)

引用 0|浏览36
暂无评分
摘要
In the last decade, optical imaging methods have significantly improved our understanding of the information processing principles in the brain. Although many promising tools have been designed, sensors of membrane potential are lagging behind the rest. Semiconductor nanoparticles are an attractive alternative to classical voltage indicators, such as voltage-sensitive dyes and proteins. Such nanoparticles exhibit high sensitivity to external electric fields via the quantum-confined Stark effect. Here we report the development of lipid-coated semiconductor voltage-sensitive nanorods (vsNRs) that self-insert into the neuronal membrane. We describe a workflow to detect and process the photoluminescent signal of vsNRs after wide-field time-lapse recordings. We also present data indicating that vsNRs are feasible for sensing membrane potential in neurons at a single-particle level. This shows the potential of vsNRs for detection of neuronal activity with unprecedentedly high spatial and temporal resolution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要