Enhancer connectome in primary human cells reveals target genes of disease-associated DNA elements

biorxiv(2017)

引用 4|浏览59
暂无评分
摘要
The challenge of linking intergenic mutations to target genes has limited molecular understanding of diverse human diseases. Here, we show H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naïve T cells to either T helper 17 cells or regulatory T cells create subtype-specific enhancer-promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a four-fold increase of potential target genes for autoimmune and cardiovascular diseases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要