Sb2Te3 Growth Study Reveals That Formation of Nanoscale Charge Carrier Domains Is an Intrinsic Feature Relevant for Electronic Applications

ACS APPLIED NANO MATERIALS(2018)

引用 10|浏览17
暂无评分
摘要
Sb2Te3 exhibits a plethora of fundamentally relevant electronic phenomena enabling electronic phase change memory cells, thermoelectric devices, and three-dimensional topological insulator structures. Thus, the controlled growth of nanostructures and thin films with well-defined electronic properties is of utmost importance. Previously, our group observed symmetric infrared domains in hexagonal Sb2Te3 nanoplatelets from a solvothermal chemical synthesis. The relative optical contrast observed was indirectly linked to the formation of regions with different defect densities (charge carrier concentrations). This raises two major questions, which we answer in this study: Is the domain formation restricted to the specific platelet growth process? No! Do the infrared spectra of both domains really follow a "Drude-like" free charge carrier response? Yes! By controlling the initial water concentration, we promote the growth of the nanoplatelets in the c-direction and tune the morphology from platelet-like to octahedra-like. Although the growth mode changes from spiral growth to layer-by-layer, similar infrared domains are identified using scattering-type scanning near-field optical microscopy (s-SNOM). Furthermore, we also reproduced the formation of symmetric infrared domains in thin, high quality crystalline films grown using molecular beam epitaxy (MBE). Normalized infrared near-field spectra of smaller Sb2Te3 nanoparticles reveal a relative shift of the plasma frequency in both domains. These findings demonstrate that the formation of domains with different charge carrier properties is an intrinsic material property of Sb2Te3 and might strongly influence all of its electronic applications.
更多
查看译文
关键词
antimony telluride,infrared near-field microscopy,charge carriers,epitaxial growth,transition metal dichalcogenides,van der Waals materials,topological insulator
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要