Valproic Acid Thermally Destabilizes and Inhibits SpyCas9 Activity.

Molecular therapy : the journal of the American Society of Gene Therapy(2020)

引用 5|浏览1
暂无评分
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system plays an important role in prokaryotic adaptive immunity. Due to its capacity for sequence-specific gene editing, CRISPR-Cas9 has become one of the most important tools widely used for genome editing in molecular biotechnology. However, its clinical application is currently limited by unwanted mutations at off-target sites. Various strategies have been developed for precise control of Cas9 in order to reduce these off-target effects, including chemical-based approaches. From a chemical screening, I observed that valproic acid (VPA) binds to and destabilizes Streptococcus pyogenes Cas9 (SpyCas9) protein in vitro, as well as in cells, while within its therapeutical concentration range under conditions of hyperthermia as demonstrated. Conditions were generated either by an external heat bag or in combination with the photothermal therapeutic agent indocyanine green activated by a near-infrared laser. Use of other histone deacetylase inhibitors failed, suggesting a histone deacetylase inhibition-independent function of VPA. Thus, this finding provides an uncomplicated thermotherapeutical approach for timely regulation of the activity of the CRISPR-Cas9 system at desired locations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要