In vitro compressive properties of skeletal muscles and inverse finite element analysis: Comparison of human versus animals.

Journal of biomechanics(2020)

引用 14|浏览20
暂无评分
摘要
Virtual finite element human body models have been widely used in biomedical engineering, traffic safety injury analysis, etc. Soft tissue modeling like skeletal muscle accounts for a large portion of a human body model establishment, and its modeling method is not enough explored. The present study aims to investigate the compressive properties of skeletal muscles due to different species, loading rates and fiber orientations, in order to obtain available parameters of specific material laws as references for building or improving the human body model concerning both modeling accuracy and computational cost. A series of compressive experiments of skeletal muscles were implemented for human gastrocnemius muscle, bovine and porcine hind leg muscle. To avoid long-time preservation effects, all experimental tests were carried out in 24 h after that the samples were harvested. Considering computational cost and generally used in the previous human body models, one-order hyperelastic Ogden model and three-term simplified viscoelastic quasi-linear viscoelastic (QLV) were selected for numerical analysis. Inverse finite element analysis was employed to obtain corresponding material parameters. With good fitting records, the simulation results presented available material parameters for human body model establishment, and also indicated significant differences of muscle compressive properties due to species, loading rates and fiber orientations. When considering one-order Ogden law, it is worthy of noting that the inversed material parameters of the porcine muscles are similar to those of the human gastrocnemius regardless of fiber orientations. In conclusion, the obtained material parameters in the present study can be references for global human body and body segment modeling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要