Quantifying Spatial Activation Patterns of Motor Units in Finger Extensor Muscles

IEEE Journal of Biomedical and Health Informatics(2021)

引用 7|浏览36
暂无评分
摘要
The ability to expertly control different fingers contributes to hand dexterity during object manipulation in daily life activities. The macroscopic spatial patterns of muscle activations during finger movements using global surface electromyography (sEMG) have been widely researched. However, the spatial activation patterns of microscopic motor units (MUs) under different finger movements have not been well investigated. The present work aims to quantify MU spatial activation patterns during movement of distinct fingers (index, middle, ring and little finger). Specifically, we focused on extensor muscles during extension contractions. Motor unit action potentials (MUAPs) during movement of each finger were obtained through decomposition of high-density sEMG (HD-sEMG). First, we quantified the spatial activation patterns of MUs for each finger based on 2-dimension (2-D) root-mean-square (RMS) maps of MUAP grids after spike-triggered averaging. We found that these activation patterns under different finger movements are distinct along the distal-proximal direction, but with partial overlap. Second, to further evaluate MU separability, we classified the spatial activation pattern of each individual MU under distinct finger movement and associated each MU with its corresponding finger with Regularized Uncorrelated Multilinear Discriminant Analysis (RUMLDA). A high accuracy of MU-finger classification tested on 12 subjects with a mean of 88.98% was achieved. The quantification of MU spatial activation patterns could be beneficial to studies of neural mechanisms of the hand. To the best of our knowledge, this is the first work which manages to quantify MU behaviors under different finger movements.
更多
查看译文
关键词
Electrodes,Electromyography,Fingers,Humans,Movement,Muscle, Skeletal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要