Aeolus: A Building Block for Proactive Transport in Datacenters

SIGCOMM '20: Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication Virtual Event USA August, 2020(2020)

引用 93|浏览159
暂无评分
摘要
As datacenter network bandwidth keeps growing, proactive transport becomes attractive, where bandwidth is proactively allocated as "credits" to senders who then can send "scheduled packets" at a right rate to ensure high link utilization, low latency, and zero packet loss. While promising, a fundamental challenge is that proactive transport requires at least one-RTT for credits to be computed and delivered. In this paper, we show such one-RTT "pre-credit" phase could carry a substantial amount of flows at high link-speeds, but none of existing proactive solutions treats it appropriately. We present Aeolus, a solution focusing on "pre-credit" packet transmission as a building block for proactive transports. Aeolus contains unconventional design principles such as scheduled-packet-first (SPF) that de-prioritizes the first-RTT packets, instead of prioritizing them as prior work. It further exploits the preserved, deterministic nature of proactive transport as a means to recover lost first-RTT packets efficiently. We have integrated Aeolus into ExpressPass[14], NDP[18] and Homa[29], and shown, through both implementation and simulations, that the Aeolus-enhanced solutions deliver signiicant performance or deployability advantages. For example, it improves the average FCT of ExpressPass by 56%, cuts the tail FCT of Homa by 20x, while achieving similar performance as NDP without switch modifications.
更多
查看译文
关键词
Bandwidth,Packet loss,Delays,Resource management,Web servers,Receivers,IEEE transactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要