Phosphorylation within the bipartite NLS alters the localization and toxicity of the ER stress response factor DDIT3/CHOP.

CELLULAR SIGNALLING(2020)

引用 7|浏览3
暂无评分
摘要
Regulated nuclear-cytoplasmic trafficking is a well-established mechanism utilized by cells to regulate adaptive and maladaptive responses to acute oxidant stress. Commonly associated with endoplasmic reticulum stress, the bZIP transcription factor CCAAT/enhancer-binding protein homologous protein (CHOP/DDIT3) mediates the cellular response to redox stress with effects on cellular growth, differentiation, and survival. We show through functional analyses that CHOP contains a conserved, compound pat4/bipartite nuclear localization signal within the basic DNA-binding domain. Using phylogenetic analyses and mass spectrometry, we now show that Ser107 located within the linker region of the bipartite NLS domain is a substrate for phosphorylation under standard culture conditions. Studies using the S107E phospho-mimic of CHOP indicate that changes in the charge properties at this residue regulate CHOP's nuclear-to-cytoplasmic ratio. And while co-stimulation with the SERCA inhibitor thapsigargin induced injury in cells expressing wild-type CHOP, the S107A point-mutant blocked this response. These findings indicate that phosphorylation within the bipartite NLS exerts regulatory effects on both the subcellular localization and toxic potential of DDIT3/CHOP. Future studies geared towards defining the relevant kinase/phosphatase networks that converge on the phosphorylation-regulated NLS (prNLS) phosphoepitope may provide an opportunity to constrain cellular damage in the context of acute ER stress.
更多
查看译文
关键词
DDIT3/CHOP,Nuclear localization signal,Post-translational modification,Growth arrest,Apoptosis,Nuclear-cytoplasmic transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要