Approximating the (continuous) Fr\'echet distance

arxiv(2020)

引用 0|浏览1
暂无评分
摘要
We describe the first strongly subquadratic time algorithm with subexponential approximation ratio for approximately computing the Fr\'echet distance between two polygonal chains. Specifically, let $P$ and $Q$ be two polygonal chains with $n$ vertices in $d$-dimensional Euclidean space, and let $\alpha \in [\sqrt{n}, n]$. Our algorithm deterministically finds an $O(\alpha)$-approximate Fr\'echet correspondence in time $O((n^3 / \alpha^2) \log n)$. In particular, we get an $O(n)$-approximation in near-linear $O(n \log n)$ time, a vast improvement over the previously best know result, a linear time $2^{O(n)}$-approximation. As part of our algorithm, we also describe how to turn any approximate decision procedure for the Fr\'echet distance into an approximate optimization algorithm whose approximation ratio is the same up to arbitrarily small constant factors. The transformation into an approximate optimization algorithm increases the running time of the decision procedure by only an $O(\log n)$ factor.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要