Adaptive multilevel space-time-stepping scheme for transport in heterogeneous porous media (ADM-LTS)

Journal of Computational Physics: X(2020)

引用 7|浏览3
暂无评分
摘要
We present ADM-LTS, an adaptive multilevel space-time-stepping scheme for transport in heterogeneous porous media. At each time step, firstly, the flow (pressure) solution is obtained. Then, the transport equation is solved using the ADM-LTS method, which consists of two stages. In the first stage, an initial solution is obtained by imposing the coarsest space-time grid. This initial solution is then improved, in the second stage, by imposing a space-time adaptive grid on the cells where the solution does not satisfy the desired quality. The quality control is based on error estimators with user-defined threshold values. The time-integration procedure, in which the coarsest-scale solution provides local flux boundary conditions for sub-domains with local time refinement, is strictly mass conservative. In addition, the method employs space-time fine grid cells only at the moving saturation fronts. In order to ensure local mass conservation at all levels, finite-volume restriction operators and unity prolongation operators are developed. Several numerical experiments have been performed to analyze the efficiency and accuracy of the proposed ADM-LTS method for both homogeneous and heterogeneous permeability fields on two and three dimensional domains. The results show that the method provides accurate solutions, at the same time it maintains the computational efficiency. The ADM-LTS implementation is publicly available at https://gitlab.com/darsim2simulator.
更多
查看译文
关键词
Local time-stepping strategies,Conservative multirate methods,Algebraic multilevel methods,Multiphase flow,Porous media
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要