Synthesis and Multipole Plasmon Resonances of Spherical Aluminum Nanoparticles.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2020)

引用 18|浏览0
暂无评分
摘要
In comparison to Au and Ag, the high plasma frequency of Al allows multipole plasmon resonances from the ultraviolet to visible (UV-vis) range to be achieved by its nanoparticles with much smaller sizes and even a spherical shape. Herein, we report the high-supersaturation growth of monodisperse spherical Al nanoparticles (Al NPs) from 84 to 200 nm and their distinctive size-dependent multipole plasmon resonance properties in the UV-vis range. Linear relationships between the particle diameter and resonance peak positions of the dipole, quadrupole, and octupole were observed experimentally and confirmed by finite-difference time-domain (FDTD) calculations. FDTD calculations further reveal the high scattering-to-extinction ratio of multipole modes for the particle diameters >100 nm. The extinction coefficients of spherical Al NPs with different diameters were also determined. The excellent matching between the experimental and simulated results in the present work not only offers a standard for the synthesis and characterization of high-quality Al NPs but also provides new insight into the multipole plasmonic properties of Al NPs for advanced optical and sensing applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要