Calibrated Adversarial Refinement for Stochastic Semantic Segmentation.

arxiv(2021)

引用 8|浏览1
暂无评分
摘要
In semantic segmentation tasks, input images can often have more than one plausible interpretation, thus allowing for multiple valid labels. To capture such ambiguities, recent work has explored the use of probabilistic networks that can learn a distribution over predictions. However, these do not necessarily represent the empirical distribution accurately. In this work, we present a strategy for learning a calibrated predictive distribution over semantic maps, where the probability associated with each prediction reflects its ground truth correctness likelihood. To this end, we propose a novel two-stage, cascaded approach for calibrated adversarial refinement: (i) a standard segmentation network is trained with categorical cross-entropy to predict a pixelwise probability distribution over semantic classes and (ii) an adversarially trained stochastic network is used to model the inter-pixel correlations to refine the output of the first network into coherent samples. Importantly, to calibrate the refinement network and prevent mode collapse, the expectation of the samples in the second stage is matched to the probabilities predicted in the first. We demonstrate the versatility and robustness of the approach by achieving state-of-the-art results on the multigrader LIDC dataset and on a modified Cityscapes dataset with injected ambiguities. In addition, we show that the core design can be adapted to other tasks requiring learning a calibrated predictive distribution by experimenting on a toy regression dataset. We provide an open source implementation of our method at https://github.com/EliasKassapis/CARSSS.
更多
查看译文
关键词
Segmentation,grouping and shape,Adversarial learning,Vision applications and systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要