Space-Aware Reconfiguration

Discrete & Computational Geometry(2022)

引用 6|浏览37
暂无评分
摘要
We consider the problem of reconfiguring a set of physical objects into a desired target configuration, a typical (sub)task in robotics and automation, arising in product assembly, packaging, stocking store shelves, and more. In this paper we address a variant, which we call space-aware reconfiguration , where the goal is to minimize the physical space needed for the reconfiguration, while obeying constraints on the allowable collision-free motions of the objects. Since for given start and target configurations, reconfiguration may be impossible, we translate the entire target configuration rigidly into a location that admits a valid sequence of moves, where each object moves in turn just once, along a straight line, from its starting to its target location, so that the overall physical space required by the start, all intermediate, and target configurations for all the objects is minimized. We investigate two variants of space-aware reconfiguration for the often examined setting of n unit discs in the plane, depending on whether the discs are distinguishable (labeled) or indistinguishable (unlabeled). For the labeled case, we propose a representation of size O(n^4) of the space of all feasible initial rigid translations, and use it to find, in O(n^6) time, a shortest valid translation, or one that minimizes the enclosing disc or axis-aligned rectangle of both the start and target configurations. For the significantly harder unlabeled case, we show that for almost every direction, there exists a translation in this direction that makes the problem feasible. We use this to devise heuristic solutions, where we optimize the translation under stricter notions of feasibility. We present an implementation of such a heuristic, which solves unlabeled instances with hundreds of discs in seconds.
更多
查看译文
关键词
Motion planning,Disc reconfiguration,Smallest enclosing disc
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要