Driver Mutations in Leukemia Promote Disease Pathogenesis through a Combination of Cell-Autonomous and Niche Modulation.

Stem cell reports(2020)

引用 10|浏览20
暂无评分
摘要
Studies of patients with acute myeloid leukemia (AML) have led to the identification of mutations that affect different cellular pathways. Some of these have been classified as preleukemic, and a stepwise evolution program whereby cells acquire additional mutations has been proposed in the development of AML. How the timing of acquisition of these mutations and their impact on transformation and the bone marrow (BM) microenvironment occurs has only recently begun to be investigated. We show that constitutive and early loss of the epigenetic regulator, TET2, when combined with constitutive activation of FLT3, results in transformation of chronic myelomonocytic leukemia-like or myeloproliferative neoplasm-like phenotype to AML, which is more pronounced in double-mutant mice relative to mice carrying mutations in single genes. Furthermore, we show that in preleukemic and leukemic mice there are alterations in the BM niche and secreted cytokines, which creates a permissive environment for the growth of mutation-bearing cells relative to normal cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要