Local Deep Implicit Functions For 3d Shape

2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)(2020)

引用 414|浏览543
暂无评分
摘要
The goal of this project is to learn a 3D shape representation that enables accurate surface reconstruction, compact storage, efficient computation, consistency for similar shapes, generalization across diverse shape categories, and inference from depth camera observations. Towards this end, we introduce Local Deep Implicit Functions (LDIF), a 3D shape representation that decomposes space into a structured set of learned implicit functions. We provide networks that infer the space decomposition and local deep implicit functions from a 3D mesh or posed depth image. During experiments, we find that it provides 10.3 points higher surface reconstruction accuracy (F-Score) than the state-of-the-art (OccNet), while requiring fewer than 1% of the network parameters. Experiments on posed depth image completion and generalization to unseen classes show 15.8 and 17.8 point improvements over the state-of-the-art, while producing a structured 3D representation for each input with consistency across diverse shape collections.
更多
查看译文
关键词
OccNet,depth camera observations,LDIF,F-Score,local deep implicit function learning,diverse shape collections,structured 3D representation,surface reconstruction,posed depth image completion,diverse shape categories,3D shape representation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要