Plasmonic Manipulation-Controlled Chiral Crystallization of Sodium Chlorate (vol 11, pg 4422, 2020)

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2022)

引用 22|浏览15
暂无评分
摘要
Plasmonic manipulation using well-designed triangular trimeric gold nanostructures achieves a giant (greater than 50%) crystal enantiomeric excess (CEE) of sodium chlorate (NaClO3). Stronger asymmetric interactions between molecule and light are pursued to reach high enantiomeric excess. The well-designed gold nanostructures immersed in a saturated NaClO3 D2O solution were irradiated with linear, left-hand, and right-hand circular polarizations of a 1064 nm continuous-wave laser. Within seconds of the start of the irradiation, an achiral metastable crystal was formed at the laser focus, and further irradiation induced a subsequent polymorphic transition to the chiral crystal. The crystal chirality is sensitive to the handedness of circular polarization, allowing for efficient enantioselectivity. The mechanisms to achieve this giant CEE are proposed based on the results of electromagnetic field analysis generated near the nanostructure by the finite element method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要