A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the Cl - /H + transport cycle.

ELIFE(2020)

引用 28|浏览29
暂无评分
摘要
Among coupled exchangers, CLCs uniquely catalyze the exchange of oppositely charged ions (Cl- for H+). Transport-cycle models to describe and explain this unusual mechanism have been proposed based on known CLC structures. While the proposed models harmonize with many experimental findings, gaps and inconsistencies in our understanding have remained. One limitation has been that global conformational change - which occurs in all conventional transporter mechanisms - has not been observed in any high-resolution structure. Here, we describe the 2.6 angstrom structure of a CLC mutant designed to mimic the fully H+-loaded transporter. This structure reveals a global conformational change to improve accessibility for the Cl- substrate from the extracellular side and new conformations for two key glutamate residues. Together with DEER measurements, MD simulations, and functional studies, this new structure provides evidence for a unified model of H+/Cl- transport that reconciles existing data on all CLC-type proteins.
更多
查看译文
关键词
E. coli,molecular biophysics,structural biology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要