Tool condition monitoring in milling using a force singularity analysis approach

The International Journal of Advanced Manufacturing Technology(2020)

引用 20|浏览5
暂无评分
摘要
Tool condition monitoring (TCM) is extremely important to ensure production efficiency and workpiece quality. It is crucial to extract and select suitable features from raw signals to improve the robustness and feasibility of TCM systems. This paper introduces a cutting force singularity analysis approach for TCM in milling, which correlates tool wear states with force waveform variations. The Holder exponents (HEs) were selected as the index of singularities. HEs are calculated by wavelet transform modulus maxima (WTMM). The raw signal is de-noised based on WTMM estimation, which can effectively preserve singularities compared with traditional filters. Fisher’s discriminant ratio (FDR) is employed to rank the discriminant capability of statistical features of HEs. It is found that means of HEs and quantities of singular points estimated from feed forces F x show the strongest class-discriminant ability. Then, these features were chosen as training samples to propose a TCM approach based on the support vector machine (SVM). Experimental results indicate that this approach provides reliable and effective advice for tool change.
更多
查看译文
关键词
Cutting force,Tool condition monitoring,Singularity,Fisher’s discriminant ratio,Support vector machine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要