BrIM and UAS for bridge inspections and management

ENGINEERING CONSTRUCTION AND ARCHITECTURAL MANAGEMENT(2020)

引用 32|浏览2
暂无评分
摘要
Purpose The purpose of this paper is to develop a novel and systematic framework for bridge inspection and management to improve the efficiency in current practice. Design/methodology/approach A new framework that implements camera-based unmanned aerial systems (UASs) with computer vision algorithms to collect and process inspection data, and Bridge Information Modeling (BrIM) to store and manage all related inspection information is proposed. An illustrative case study was performed using the proposed framework to test its feasibility and efficiency. Findings The test results of the proposed framework on an existing bridge verified that: high-resolution images captured by an UAS enable to visually identify different types of defects, and detect cracks automatically using computer vision algorithms, the use of BrIM enable assigning defect information on individual model elements, manage all bridge data in a single model across the bridge life cycle. The evaluation by bridge inspectors from 12 states across the USA demonstrated that all of the identified problems, except for being subjective, can be improved using the proposed framework. Practical implications - The proposed framework enables to: collect and document accurate bridge inspection data, reduce the number of site visits and avoid data overload and facilitate a more efficient, cost-effective and safer bridge inspection process. Originality/value This paper contributes a novel and systematic framework for the collection and integration of inspection data for bridge inspection and management. The findings from the case study suggest that the proposed framework should help improve current bridge inspection and management practice. Furthermore, the difficulties experienced during the implementation are evaluated, which should be helpful for improving the efficiency and the degree of automation of the proposed framework further.
更多
查看译文
关键词
Information systems,Technology,Management,Methodology,Building information modelling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要