My Gadget Just Cares For Me - How Nina Can Prove Security Against Combined Attacks

TOPICS IN CRYPTOLOGY, CT-RSA 2020(2020)

引用 16|浏览40
暂无评分
摘要
Differential Power Analysis and Differential Fault Analysis threaten the security of even the most trustworthy cryptographic primitives. It is important we protect their implementation such that no sensitive information is leaked using side channels and it withstands injected faults or combined physical attacks.In this work, we propose security notions tailored against advanced physical attacks consisting of both faults and probes on circuit wires. We then transform the security notions to composable security notions. The motivation for this research includes the ease of verification time; the creation of secure components; and the isolation of primitives in larger protocols such as modes of operations. We dub our notion NINA, which forms the link between the established Non-Interference (NI) property and our composable active security property, Non-Accumulation (NA).To illustrate the NINA property, we use it to prove the security of two multiplication gadgets: an error checking duplication gadget and an error correcting duplication gadget. The NINA proofs for error detecting gadgets capture the effect of Statistical Ineffective Fault Analysis (SIFA), an attack vector which threatens most current masked implementations. Additionally, we study error correcting techniques. We show that error correcting gadgets can attain the Independent NINA property. A stronger property which captures a clear separation between the effect of faults and probes. Thus, we show that clever error correcting gadgets improve on error detecting ones by achieving significant higher levels of combined security along with guaranteed output delivery.
更多
查看译文
关键词
Combined security, DFA, DPA, Masking, SIFA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要