Serial ctDNA monitoring to predict response to systemic therapy in metastatic gastrointestinal cancers.

CLINICAL CANCER RESEARCH(2020)

引用 59|浏览120
暂无评分
摘要
Purpose: ctDNA offers a promising, noninvasive approach to monitor therapeutic efficacy in real-time. We explored whether the quantitative percent change in ctDNA early after therapy initiation can predict treatment response and progression-free survival (PFS) in patients with metastatic gastrointestinal cancer. Experimental Design: A total of 138 patients with metastatic gastrointestinal cancers and tumor profiling by next-generation sequencing had serial blood draws pretreatment and at scheduled intervals during therapy. ctDNA was assessed using individualized droplet digital PCR measuring the mutant allele fraction in plasma of mutations identified in tumor biopsies. ctDNA changes were correlated with tumor markers and radiographic response. Results: A total of 138 patients enrolled. A total of 101 patients were evaluable for ctDNA and 68 for tumor markers at 4 weeks. Percent change of ctDNA by 4 weeks predicted partial response (PR, P < 0.0001) and clinical benefit [CB: PR and stable disease (SD), P < 0.0001]. ctDNA decreased by 98% (median) and > 30% for all PR patients. ctDNA change at 8 weeks, but not 2 weeks, also predicted CB (P < 0.0001). Four-week change in tumor markers also predicted response (P = 0.0026) and CB (P = 0.022). However, at a clinically relevant specificity threshold of 90%, 4-week ctDNA change more effectively predicted CB versus tumor markers, with a sensitivity of 60% versus 24%, respectively (P = 0.0109). Patients whose 4-week ctDNA decreased beyond this threshold (>= 30% decrease) had a median PFS of 175 days versus 59.5 days (HR, 3.29; 95% CI, 1.55-7.00; P < 0.0001). Conclusions: Serial ctDNA monitoring may provide early indication of response to systemic therapy in patients with metastatic gastrointestinal cancer prior to radiographic assessments and may outperform standard tumormarkers, warranting further evaluation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要