BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis.

PLOS COMPUTATIONAL BIOLOGY(2020)

引用 37|浏览144
暂无评分
摘要
Advanced brain imaging analysis methods, including multivariate pattern analysis (MVPA), functional connectivity, and functional alignment, have become powerful tools in cognitive neuroscience over the past decade. These tools are implemented in custom code and separate packages, often requiring different software and language proficiencies. Although usable by expert researchers, novice users face a steep learning curve. These difficulties stem from the use of new programming languages (e.g., Python), learning how to apply machine-learning methods to high-dimensional fMRI data, and minimal documentation and training materials. Furthermore, most standard fMRI analysis packages (e.g., AFNI, FSL, SPM) focus on preprocessing and univariate analyses, leaving a gap in how to integrate with advanced tools. To address these needs, we developed BrainIAK (brainiak.org), an open-source Python software package that seamlessly integrates several cutting-edge, computationally efficient techniques with other Python packages (e.g., , ) for file handling, visualization, and machine learning. To disseminate these powerful tools, we developed user-friendly tutorials (in Jupyter format; ) for learning BrainIAK and advanced fMRI analysis in Python more generally. These materials cover techniques including: MVPA (pattern classification and representational similarity analysis); parallelized searchlight analysis; background connectivity; full correlation matrix analysis; inter-subject correlation; inter-subject functional connectivity; shared response modeling; event segmentation using hidden Markov models; and real-time fMRI. For long-running jobs or large memory needs we provide detailed guidance on high-performance computing clusters. These notebooks were successfully tested at multiple sites, including as problem sets for courses at Yale and Princeton universities and at various workshops and hackathons. These materials are freely shared, with the hope that they become part of a pool of open-source software and educational materials for large-scale, reproducible fMRI analysis and accelerated discovery. Author summary The analysis of brain activity, as measured using functional magnetic resonance imaging (fMRI), has led to significant discoveries about how the brain processes information and how this is affected by disease. However, exhaustive multivariate analyses in space and time, run across a large number of subjects, can be complex and computationally intensive, creating a high barrier for entry into this field. Furthermore, the materials available to learn these methods do not encompass all the methods used, work is often published with no publicly available code, and the analyses are often difficult to run on large datasets without cluster computing. We have created interactive software tutorials that make it easy to understand and execute advanced analyses on fMRI data using the BrainIAK package-an open-source package built in Python. We have released these tutorials freely to the public and have significantly reduced computational roadblocks for users by making it possible to run the tutorials with a web browser and internet connection. We hope that this facilitated access and the usability of the underlying code-a compendium for how to program and optimize the latest fMRI analyses-will accelerate training, reproducibility, and discovery in cognitive neuroscience.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要