Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing.

Biomaterials(2020)

引用 94|浏览7
暂无评分
摘要
While interstitial fibrosis plays a significant role in heart failure, our understanding of disease progression in humans is limited. To address this limitation, we have engineered a cardiac-fibrosis-on-a-chip model consisting of a microfabricated device with live force measurement capabilities using co-cultured human cardiac fibroblasts and pluripotent stem cell-derived cardiomyocytes. Transforming growth factor-β was used as a trigger for fibrosis. Here, we have reproduced the classic hallmarks of fibrosis-induced heart failure including high collagen deposition, increased tissue stiffness, BNP secretion, and passive tension. Force of contraction was significantly decreased in fibrotic tissues that displayed a transcriptomic signature consistent with human cardiac fibrosis/heart failure. Treatment with an anti-fibrotic drug decreased tissue stiffness and BNP secretion, with corresponding changes in the transcriptomic signature. This model represents an accessible approach to study human heart failure in vitro, and allows for testing anti-fibrotic drugs while facilitating the real-time assessment of cardiomyocyte function.
更多
查看译文
关键词
Organ-on-a-chip,Tissue engineering,Heart failure,Cardiac fibrosis,Human stem cell-derived cardiomyocytes,Disease modeling,Pirfenidone,Carvediolol,Losartan,Force of contraction,microRNA,Extracellular vesicles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要