Simulation of Austenite Formation During Continuous Heating from Low Carbon Martensite with Poly-dispersed Cementite

Metallurgical and Materials Transactions A(2019)

引用 4|浏览2
暂无评分
摘要
The nucleation and growth of austenite during continuous heating in plain carbon martensite is simulated using classical nucleation and diffusion growth theories assuming that austenite is nucleated on cementite particles at prior austenite grain boundaries and martensite packet, block, and interlath boundaries. A critical nucleus model on the spherical substrate was modified to take into account the influence of the boundary energy on which cementite particles formed. Simulations were carried out using the particle size distribution of cementite measured in an Fe-0.2 mass pct C alloy heated to near eutectoid temperature (Ae 1 ). Austenite nucleation stopped in a very short time regardless of boundary site or particle size of cementite due to the fast decrease in carbon supersaturation and the depletion of nucleation sites. The fraction of austenite nucleated on cementite at prior austenite boundaries and martensite packet boundaries etc was much greater than that nucleated on cementite at interlath boundaries. While cementite particles dissolved quickly after austenite was nucleated, a large proportion of cementite particles at lath boundaries remained undissolved until they disappeared at 30 °C to 40 °C above Ae 1 . The evolution of austenite grain size was also simulated after austenitization was completed, and compared with experiment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要