Statistical inference in ensemble modeling of cellular metabolism.

PLOS COMPUTATIONAL BIOLOGY(2019)

引用 16|浏览4
暂无评分
摘要
Kinetic models of metabolism can be constructed to predict cellular regulation and devise metabolic engineering strategies, and various promising computational workflows have been developed in recent years for this. Due to the uncertainty in the kinetic parameter values required to build kinetic models, these workflows rely on ensemble modeling (EM) principles for sampling and building populations of models describing observed physiologies. Sensitivity coefficients from metabolic control analysis (MCA) of kinetic models can provide important insight about cellular control around a given physiological steady state. However, despite considering populations of kinetic models and their model outputs, current approaches do not provide adequate tools for statistical inference. To derive conclusions from model outputs, such as MCA sensitivity coefficients, it is necessary to rank/compare populations of variables with each other. Currently existing workflows consider confidence intervals (CIs) that are derived independently for each comparable variable. Hence, it is important to derive simultaneous CIs for the variables that we wish to rank/compare. Herein, we used an existing large-scale kinetic model of Escherichia Coli metabolism to present how univariate CIs can lead to incorrect conclusions, and we present a new workflow that applies three different multivariate statistical approaches. We use the Bonferroni and the exact normal methods to build symmetric CIs using the normality assumptions. We then suggest how bootstrapping can compute asymmetric CIs whilst relaxing this normality assumption. We conclude that the Bonferroni and the exact normal methods can provide simple and efficient ways for constructing reliable CIs, with the exact normal method favored over the Bonferroni when the compared variables present dependencies. Bootstrapping, despite its significantly higher computational cost, is recommended when comparing non-normal distributions of variables. Additionally, we show how the Bonferroni method can readily be used to estimate required sample numbers to attain a certain CI size. Author summary Due to various sources of uncertainty, populations of kinetic models of metabolism are generally constructed to derive conclusions about the dynamics of the modeled physiology. However, computational ensemble modeling (EM) frameworks for building populations of kinetic models do not systematically handle the uncertainty underlying model-based conclusions. Although kinetic models could suggest that modifying the level of certain enzymes would on average increase a flux of interest, this information is incomplete if we do not know with what certainty the model predicts this. We can instead use statistical inference approaches to quantify the level of confidence for which certain model conclusions lie within the confidence intervals. We demonstrate how three statistical methodologies can be applied to construct confidence intervals around distributions of output variables derived from populations of kinetic models. We discuss the advantages and disadvantages of applying these three methods and provide advice on their usage in EM. This will lead to improved metabolic engineering decisions by helping engineers focus on the most robust conclusions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要