Nicosulfuron sorption kinetics and sorption/desorption on volcanic ash-derived soils: Proposal of sorption and transport mechanisms.

Journal of hazardous materials(2019)

引用 20|浏览1
暂无评分
摘要
Nicosulfuron sorption/desorption kinetics were studied through batch sorption studies in ten volcanic ash-derived Andisol and Ultisol soils with acidic pH and variable surface charge. Two different kinetic models were used to fit the experimental data: i) Models to establish kinetic parameters (Pseudo-First and Pseudo-Second-Order), and ii) Models to describe solute transport mechanisms of organic compounds on sorbents (Intraparticle Diffusion, Dimensionless Intraparticle, Boyd, and Two-Site Nonequilibrium). Sorption kinetic data best fit the pseudo-second-order model. Application of these models to describe solute transport suggests that underlying mechanisms are complex in all soils due to: i) surface sorption, with mass transfers controlling sorption kinetics across the boundary layer; and ii) pore diffusion (i.e. intraparticle diffusion into macropores and micropores). The Freundlich model explained equilibrium sorption data in all cases (R2 > 0.9979) with Kf values higher than those reported for different class of soils (6.85-16.08 μg1-1/n mL1/n  g-1). The hysteresis was significant in all studied soils. The lower sorption rate on Ultisols must be considered in regards to Nicosulfuron leaching potential.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要