Global Stability of Fluid Flows Despite Transient Growth of Energy

PHYSICAL REVIEW LETTERS(2022)

引用 11|浏览4
暂无评分
摘要
Verifying nonlinear stability of a laminar fluid flow against all perturbations is a central challenge in fluid dynamics. Past results rely on monotonic decrease of a perturbation energy or a similar quadratic generalized energy. None show stability for the many flows that seem to be stable despite these energies growing transiently. Here a broadly applicable method to verify global stability of such flows is presented. It uses polynomial optimization computations to construct nonquadratic Lyapunov functions that decrease monotonically. The method is used to verify global stability of 2D plane Couette flow at Reynolds numbers above the the energy stability threshold found by Orr in 1907 [The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid, Proc. R. Ir. Acad. Sect. A 27, 69 (1907)]. This is the first global stability result for any flow that surpasses the energy method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要