Pangolin: an efficient and flexible graph mining system on CPU and GPU

Hosted Content(2020)

引用 63|浏览84
暂无评分
摘要
AbstractThere is growing interest in graph pattern mining (GPM) problems such as motif counting. GPM systems have been developed to provide unified interfaces for programming algorithms for these problems and for running them on parallel systems. However, existing systems may take hours to mine even simple patterns in moderate-sized graphs, which significantly limits their real-world usability.We present Pangolin, an efficient and flexible in-memory GPM framework targeting shared-memory CPUs and GPUs. Pangolin is the first GPM system that provides high-level abstractions for GPU processing. It provides a simple programming interface based on the extend-reduce-filter model, which allows users to specify application specific knowledge for search space pruning and isomorphism test elimination. We describe novel optimizations that exploit locality, reduce memory consumption, and mitigate the overheads of dynamic memory allocation and synchronization.Evaluation on a 28-core CPU demonstrates that Pangolin outperforms existing GPM frameworks Arabesque, RStream, and Fractal by 49×, 88×, and 80× on average, respectively. Acceleration on a V100 GPU further improves performance of Pangolin by 15× on average. Compared to state-of-the-art hand-optimized GPM applications, Pangolin provides competitive performance with less programming effort.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要