Low-Level Control Of A Quadrotor With Deep Model-Based Reinforcement Learning

IEEE ROBOTICS AND AUTOMATION LETTERS(2019)

引用 116|浏览142
暂无评分
摘要
Designing effective low-level robot controllers often entail platform-specific implementations that require manual heuristic parameter tuning, significant system knowledge, or long design times. With the rising number of robotic and mechatronic systems deployed across areas ranging from industrial automation to intelligent toys, the need for a general approach to generating low-level controllers is increasing. To address the challenge of rapidly generating low-level controllers, we argue for using model-based reinforcement learning (MBRL) trained on relatively small amounts of automatically generated (i.e., without system simulation) data. In this letter, we explore the capabilities of MBRL on a Crazyflie centimeter-scale quadrotor with rapid dynamics to predict and control at <= 50 Hz. To our knowledge, this is the first use of MBRL for controlled hover of a quadrotor using only on-board sensors, direct motor input signals, and no initial dynamics knowledge. Our controller leverages rapid simulation of a neural network forward dynamics model on a graphic processing unit enabled base station, which then transmits the best current action to the quadrotor firmware via radio. In our experiments, the quadrotor achieved hovering capability of up to 6 s with 3 min of experimental training data.
更多
查看译文
关键词
Deep learning in robotics and automation, aerial systems: mechanics and control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要