Exceptionally High Geothermal Heat Flux Needed to Sustain the Northeast Greenland Ice Stream

The Cryosphere Discussions(2019)

引用 3|浏览0
暂无评分
摘要
Abstract. The Northeast Greenland Ice Stream (NEGIS) currently drains more than 10 % of the Greenland Ice Sheet area, and has recently undergone significant dynamic changes. It is therefore critical to accurately represent this feature when assessing the future contribution of Greenland to sea level rise. At present, NEGIS is reproduced in ice sheet models by inferring basal conditions using observed surface velocities. This approach helps estimate conditions at the base of the ice sheet, but cannot be used to estimate the evolution of basal drag in time, so it is not a good representation of the evolution of the ice sheet in future climate warming scenarios. NEGIS is suggested to be initiated by a geothermal heat flux anomaly close to the ice divide, left behind by the movement of Greenland over the Icelandic plume. However, the heat flux underneath the ice sheet is largely unknown, except for a few direct measurements from deep ice core drill sites. Using the Ice Sheet System Model (ISSM), with ice dynamics coupled to a subglacial hydrology model, we investigate the possibility of initiating NEGIS by inserting hotspots with various locations and intensities. We find that a minimum geothermal heat flux value of 970 mW/m2 located close to EastGRIP is required locally to reproduce the observed NEGIS velocities, consistent with previous estimates. By including high geothermal heat flux and the effect of water on sliding, we successfully reproduce the main characteristics of NEGIS in an ice sheet model without using data assimilation.
更多
查看译文
关键词
high geothermal heat flux,northeast greenland ice stream
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要