Hyperinsulinaemia does not cause de novo capillary recruitment in rat skeletal muscle.

MICROCIRCULATION(2020)

引用 17|浏览12
暂无评分
摘要
Objective The effect of insulin on blood flow distribution within muscle microvasculature has been suggested to be important for glucose metabolism. However, the "capillary recruitment" hypothesis is still controversial and relies on studies using indirect contrast-enhanced ultrasound (CEU) methods. Methods We studied how hyperinsulinemia effects capillary blood flow in rat extensor digitorum longus (EDL) muscle during euglycemic hyperinsulinemic clamp using intravital video microscopy (IVVM). Additionally, we modeled blood flow and microbubble distribution within the vascular tree under conditions observed during euglycemic hyperinsulinemic clamp experiments. Results Euglycemic hyperinsulinemia caused an increase in erythrocyte (80 +/- 25%, P < .01) and plasma (53 +/- 12%, P < .01) flow in rat EDL microvasculature. We found no evidence of de novo capillary recruitment within, or among, capillary networks supplied by different terminal arterioles; however, erythrocyte flow became slightly more homogenous. Our computational model predicts that a decrease in asymmetry at arteriolar bifurcations causes redistribution of microbubble flow among capillaries already perfused with erythrocytes and plasma, resulting in 25% more microbubbles flowing through capillaries. Conclusions Our model suggests increase in CEU signal during hyperinsulinemia reflects a redistribution of arteriolar flow and not de novo capillary recruitment. IVVM experiments support this prediction showing increases in erythrocyte and plasma flow and not capillary recruitment.
更多
查看译文
关键词
insulin,microcirculation,skeletal muscle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要