Volumetric characteristics of idiopathic pulmonary fibrosis lungs: computational analyses of high-resolution computed tomography images of lung lobes

Respiratory Research(2019)

引用 8|浏览35
暂无评分
摘要
Background Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease involving progressive degeneration of lung capacity. Current diagnosis of IPF heavily relies on visual evaluation of fibrotic features in high-resolution computed tomography (HRCT) images of the lungs. Although the characteristics of this disease have been studied at the molecular and cellular levels, little is known about the mechanical characteristics of IPF lungs inferred from HRCT images. To this end, we performed a pilot study to investigate the radiographic and volumetric characteristics of lungs in subjects with IPF. Methods We collected HRCT images of healthy ( N = 13) and IPF ( N = 9) lungs acquired at breath-holds after full inspiration (expanded state) and full expiration (contracted state). We performed statistical analyses on Hounsfield unit (HU) histograms, lobar volumes ( V : lobe volume normalized by the lung volume), and lobar flows ( Q : the difference in lobe volume divided by the difference in lung volume between the expanded and contracted states). Results Parameters characterizing the HU histograms (i.e., mean, median, skewness, and kurtosis) significantly differed between healthy and IPF subjects, for all lobes in both expanded and contracted states. The distribution of V across lobes differed significantly between the groups in both states. The distribution of Q also differed significantly between the groups: Q values of the lower lobes for the IPF group were 33% (right) and 22% (left) smaller than those for the healthy group, consistent with the observation that radiographic scores were highest in the lower lung section in IPF. Notably, the root-mean-squared difference (RMSD) of Q , a measure of distance from the mean value of the healthy group, clearly distinguished the IPF subjects (RMSD of Q > 1.59) from the healthy group (RMSD of Q < 0.67). Conclusion This study shows that lung volume and flow distribution change heterogeneously across the lung lobes of IPF subjects, with reduced capacity in the lower lobes. These volumetric changes may improve our understanding of the pathophysiology in IPF lungs.
更多
查看译文
关键词
Idiopathic pulmonary fibrosis, Quantitative HRCT analysis, Lobar flow distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要