Spike threshold adaptation diversifies neuronal operating modes in the auditory brain stem.

JOURNAL OF NEUROPHYSIOLOGY(2019)

引用 8|浏览6
暂无评分
摘要
Single neurons function along a spectrum of neuronal operating modes whose properties determine how the output firing activity is generated from synaptic input. The auditory brain stem contains a diversity of neurons, from pure coincidence detectors to pure integrators and those with intermediate properties. We investigated how intrinsic spike initiation mechanisms regulate neuronal operating mode in the avian cochlear nucleus. Although the neurons in one division of the avian cochlear nucleus, nucleus magnocellularis, have been studied in depth, the spike threshold dynamics of the tonically firing neurons of a second division of cochlear nucleus, nucleus angularis (NA), remained unexplained. The input-output functions of tonically firing NA neurons were interrogated with directly injected in vivo-like current stimuli during whole cell patch-clamp recordings in vitro. Increasing the amplitude of the noise fluctuations in the current stimulus enhanced the firing rates in one subset of tonically firing neurons ("differentiators") but not another ("integrators"). We found that spike thresholds showed significantly greater adaptation and variability in the differentiator neurons. A leaky integrate-and-fire neuronal model with an adaptive spike initiation process derived from sodium channel dynamics was fit to the firing responses and could recapitulate >80% of the precise temporal firing across a range of fluctuation and mean current levels. Greater threshold adaptation explained the frequency-current curve changes due to a hyperpolarized shift in the effective adaptation voltage range and longer-lasting threshold adaptation in differentiators. The fine-tuning of the intrinsic properties of different NA neurons suggests they may have specialized roles in spectrotemporal processing. NEW & NOTEWORTHY Avian cochlear nucleus angularis (NA) neurons are responsible for encoding sound intensity for sound localization and spectrotemporal processing. An adaptive spike threshold mechanism fine-tunes a subset of repetitive-spiking neurons in NA to confer coincidence detector-like properties. A model based on sodium channel inactivation properties reproduced the activity via a hyperpolarized shift in adaptation conferring fluctuation sensitivity.
更多
查看译文
关键词
adaptation,cochlear nucleus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要