Reprogramming AA catabolism in CHO cells with CRISPR/Cas9 genome editing improves cell growth and reduces byproduct secretion.

Metabolic Engineering(2019)

引用 20|浏览15
暂无评分
摘要
Chinese hamster ovary (CHO) cells are the preferred host for producing biopharmaceuticals. Amino acids are biologically important precursors for CHO metabolism; they serve as building blocks for proteogenesis, including synthesis of biomass and recombinant proteins, and are utilized for growth and cellular maintenance. In this work, we studied the physiological impact of disrupting a range of amino acid catabolic pathways in CHO cells. We aimed to reduce secretion of growth inhibiting metabolic by-products derived from amino acid catabolism including lactate and ammonium. To achieve this, we engineered nine genes in seven different amino acid catabolic pathways using the CRISPR-Cas9 genome editing system. For identification of target genes, we used a metabolic network reconstruction of amino acid catabolism to follow transcriptional changes in response to antibody production, which revealed candidate genes for disruption. We found that disruption of single amino acid catabolic genes reduced specific lactate and ammonium secretion while specific growth rate and integral of viable cell density were increased in many cases. Of particular interest were Hpd and Gad2 disruptions, which show unchanged AA uptake rates, while having growth rates increased up to 19%, and integral of viable cell density as much as 50% higher, and up to 26% decrease in specific ammonium production and to a lesser extent (up to 22%) decrease in lactate production. This study demonstrates the broad potential of engineering amino acid catabolism in CHO cells to achieve improved phenotypes for bioprocessing.
更多
查看译文
关键词
Chinese hamster ovary cells,Lactate,Ammonium,AA catabolism,CRISPR,Metabolic network reconstruction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要