A microfluidic device for label-free isolation of tumor cell clusters from unprocessed blood samples.

BIOMICROFLUIDICS(2019)

引用 18|浏览112
暂无评分
摘要
Primary cancers disseminate both single circulating tumor cells (CTCs) and CTC "clusters," the latter of which have been shown to demonstrate greater metastatic propensity and adverse impact on prognosis. Many devices developed to isolate single CTCs also capture CTC clusters, but there is translational potential for a platform specifically designed to isolate CTC clusters. Herein, we introduce our microfluidic device for isolating CTC clusters ("Microfluidic Isolation of CTC Clusters" or MICC), which is equipped with similar to 10000 trap chambers that isolate tumor cell clusters based on their large sizes and dynamic force balance against a pillar obstacle in the trap chamber. Whole blood is injected, followed by a wash step to remove blood cells and a final backflush to release intact clusters for downstream analysis. Using clusters from tumor cell-line and confocal microscopy, we verified the ability of the MICC platform to specifically capture tumor cell clusters in the trap chambers. Our flow rate optimization experiments identified 25 mu l/min for blood injection, 100 mu l/min as wash flow rate, and 300 mu l/min as the release flow rate - indicating that 1ml of whole blood can be processed in less than an hour. Under these optimal flow conditions, we assessed the MICC platform's capture and release performance using blood samples spiked with different concentrations of clusters, revealing a capture efficiency of 66%-87% and release efficiency of 76%-90%. The results from our study suggest that the MICC platform has the potential to isolate CTC clusters from cancer patient blood, enabling it for clinical applications in cancer management. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要