Synthesis and computer-aided SAR studies for derivatives of phenoxyalkyl-1,3,5-triazine as the new potent ligands for serotonin receptors 5-HT6.

European journal of medicinal chemistry(2019)

引用 15|浏览25
暂无评分
摘要
This research has provided the most active 5-HT6R agents among 1,3,5-triazine derivatives investigated to date and has also identified the world's first selenium-containing 5-HT6R ligands. The studies are focused on design, synthesis, biological evaluation and docking-supported SAR analysis for novel 5-HT6R agents as derivatives of lead structure 4-(4-methylpiperazin-1-yl)-6-(phenoxymethyl)-1,3,5-triazin-2-amine (7). The lead modifications included an introduction of: (i) various small substituents at benzene ring, (ii) a branched ether linker or (iii) the ether oxygen replacement with other chalcogen (S, Se) or sulfonyl moiety. Hence, a series of new compounds (7-24) was synthesized and examined on their affinities for 5-HT6R and selectivity, in respect to the 5-HT1AR, 5-HT2AR, 5-HT7R and dopamine D2 receptor, in the radioligand binding assays. For representative most active compounds functional bioassays and toxicity profile in vitro and antidepressant-like activity in vivo were examined. The 2-isopropyl-5-methylphenyl derivative (10) was found as the most active triazine 5-HT6R antagonist (Ki = 11 nM). SAR analysis indicated, that an exchange of oxygen to selenium (7 vs. 22), and especially, to sulfur (7 vs. 19) was beneficial to increase both affinity and antagonistic action for 5-HT6R. Surprisingly, an introduction of SO2 caused a drastic decrease of the 5-HT6R affinity, which was explained at a molecular level based on docking studies. All in vivo tested compounds (10, 18 and 21) did not show any risk of toxicity in the safety studies in vitro.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要