Designated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assumptions

ADVANCES IN CRYPTOLOGY - EUROCRYPT 2019, PT II(2019)

引用 26|浏览45
暂无评分
摘要
In a non-interactive zero-knowledge (NIZK) proof, a prover can non-interactively convince a verifier of a statement without revealing any additional information. Thus far, numerous constructions of NIZKs have been provided in the common reference string (CRS) model (CRS-NIZK) from various assumptions, however, it still remains a long standing open problem to construct them from tools such as pairing-free groups or lattices. Recently, Kim and Wu (CRYPTO’18) made great progress regarding this problem and constructed the first lattice-based NIZK in a relaxed model called NIZKs in the preprocessing model (PP-NIZKs). In this model, there is a trusted statement-independent preprocessing phase where secret information are generated for the prover and verifier. Depending on whether those secret information can be made public, PP-NIZK captures CRS-NIZK, designated-verifier NIZK (DV-NIZK), and designated-prover NIZK (DP-NIZK) as special cases. It was left as an open problem by Kim and Wu whether we can construct such NIZKs from weak paring-free group assumptions such as DDH. As a further matter, all constructions of NIZKs from Diffie-Hellman (DH) type assumptions (regardless of whether it is over a paring-free or paring group) require the proof size to have a multiplicative-overhead \(|C| \cdot \mathsf {poly}(\kappa )\), where |C| is the size of the circuit that computes the \(\mathbf {NP}\) relation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要