Applying CRISPR-based genetic screens to identify drivers of tumor-cell sensitivity towards NK-cell attack

bioRxiv(2019)

引用 2|浏览95
暂无评分
摘要
Natural killer (NK) cells distinguish cancer cells from healthy cells using an array of germline-encoded receptors that interact with ligands expressed on target cells. A balance of inhibitory and activating signals transduced by these receptors regulate NK cell function to provide anti-tumor immunity while maintaining self-tolerance. However, knowledge of the spectrum of factors regulating NK-cell-mediated cytotoxicity, including the contribution of specific ligands and regulatory mechanisms for their expression on tumor cells, remains incomplete. Here, we apply a genome-wide loss-of-function screen in tumor cells using CRISPR/Cas9 technology to identify the factors that promote NK-cell cytotoxicity towards tumor cells. We established the drivers of Tumor-cell Sensitivity towards NK-cell Attack (TuSeNKA) screening approach using the chronic myeloid leukemia (CML) cell line, K562. Interestingly, we identified B7H6, the ligand for the activating NK cell receptor NKp30, as the single factor whose loss resulted in increased resistance of K562 cells towards NK cells. Our study shows that combination of CRISPR-based genetic screens with NK-cell cytotoxicity assays is a valuable tool for identifying functionally relevant NK cell-tumor cell interactions, paving the way for further investigations that unravel the complexity of signals that promote NK-cell recognition of transformed cells and develop therapies that target these modes of tumor-cell killing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要