An intelligent flying system for automatic detection of faults in photovoltaic plants

Journal of Ambient Intelligence and Humanized Computing(2019)

引用 46|浏览62
暂无评分
摘要
For several years, fault diagnosis of photovoltaic (PV) plants has been manually performed by the human operator by a visual inspection or automatically, by evaluating electrical measures collected by sensors mounted on each PV module. In recent years, a notable interest of the scientific community has been devoted towards the definition of algorithms able to automatically analyse the sequence of images acquired by a thermal camera mounted on board of an unmanned aerial vehicle (UAV) for early PV anomaly detection. In this paper, we define a model-based approach for the detection of the panels, which uses the structural regularity of the PV string and a novel technique for local hot spot detection, based on the use of a fast and effective algorithm for finding local maxima in the PV panel region. Finally, we introduce the concept of global hot spot detection, namely a multi-frame recognition of PV faults which further improves the anomaly detection accuracy of the proposed method. The algorithm has been designed and optimized so as to run in real-time directly on an embedded system on board of the UAV. The accuracy of the proposed approach has been experimented on several video sequences with a standard protocol in terms of Precision, Recall and F-Score, so that our dataset and our quantitative results can be used for future comparisons and to evaluate the reliability of computer vision techniques designed for thermographic PV inspection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要