Learning to Decompose: A Paradigm for Decomposition-Based Multiobjective Optimization

IEEE Transactions on Evolutionary Computation(2019)

引用 99|浏览26
暂无评分
摘要
The decomposition-based evolutionary multiobjective optimization (EMO) algorithm has become an increasingly popular choice for a posteriori multiobjective optimization. However, recent studies have shown that their performance strongly depends on the Pareto front (PF) shapes. This can be attributed to the decomposition method, of which the reference points and subproblem formulation settings are not well adaptable to various problem characteristics. In this paper, we develop a learning-to-decompose (LTD) paradigm that adaptively sets the decomposition method by learning the characteristics of the estimated PF. Specifically, it consists of two interdependent parts, i.e., a learning module and an optimization module. Given the current nondominated solutions from the optimization module, the learning module periodically learns an analytical model of the estimated PF. Thereafter, useful information is extracted from the learned model to set the decomposition method for the optimization module: 1) reference points compliant with the PF shape and 2) subproblem formulations whose contours and search directions are appropriate for the current status. Accordingly, the optimization module, which can be any decomposition-based EMO algorithm in principle, decomposes the multiobjective optimization problem into a number of subproblems and optimizes them simultaneously. To validate our proposed LTD paradigm, we integrate it with two decomposition-based EMO algorithms, and compare them with four state-of-the-art algorithms on a series of benchmark problems with various PF shapes.
更多
查看译文
关键词
Optimization,Shape,Sociology,Statistics,Computer science,Self-organizing feature maps,Analytical models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要