Chromatic neuronal jamming in a primitive brain

bioRxiv(2020)

引用 5|浏览13
暂无评分
摘要
Jamming models developed in inanimate matter have been widely used to describe cell packing in tissues 1 – 7 , but predominantly neglect cell diversity, despite its prevalence in biology. Most tissues, animal brains in particular, comprise a mix of many cell types, with mounting evidence suggesting that neurons can recognize their respective types as they organize in space 8 – 11 . How cell diversity revises the current jamming paradigm is unknown. Here, in the brain of the flatworm planarian Schmidtea mediterranea , which exhibits remarkable tissue plasticity within a simple, quantifiable nervous system 12 – 16 , we identify a distinct packing state, ‘chromatic’ jamming. Combining experiments with computational modelling, we show that neurons of distinct types form independent percolating networks barring any physical contact. This jammed state emerges as cell packing configurations become constrained by cell type-specific interactions and therefore may extend to describe cell packing in similarly complex tissues composed of multiple cell types.
更多
查看译文
关键词
Biological physics,Statistical physics,thermodynamics and nonlinear dynamics,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要