Kinetic Machine Learning Unravels Ligand-Directed Conformational Change Of Mu Opioid Receptor

BIOPHYSICAL JOURNAL(2018)

引用 3|浏览77
暂无评分
摘要
The μ Opioid Receptor (μOR) is a G-Protein Coupled Receptor (GPCR) that mediates pain and is a key target for clinically administered analgesics. The current generation of prescribed opiates -- drugs that bind to μOR -- engender dangerous side effects such as respiratory depression and addiction in part by stabilizing off-target conformations of the receptor. To determine both the key conformations of μOR to atomic resolution as well as the transitions between them, long timescale molecular dynamics (MD) simulations were conducted and analyzed. These simulations predict new and potentially druggable metastable states that have not been observed by crystallography. We applied cutting edge algorithms (e.g., tICA and Transfer Entropy) to guide our analysis and distill the key events and conformations from simulation, presenting a transferrable and systematic analysis scheme. Our approach provides a complete, predictive model of the dynamics, structure of states, and structure-ligand relationships of μOR with broad applicability to GPCR biophysics and medicinal chemistry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要