Ultrathin Graphene Intercalation in PEDOT:PSS/Colorless Polyimide-Based Transparent Electrodes for Enhancement of Optoelectronic Performance and Operational Stability of Organic Devices.

ACS applied materials & interfaces(2019)

引用 20|浏览17
暂无评分
摘要
A novel flexible transparent electrode (TE) having a trilayer-stacked geometry, and high optoelectronic performance and operational stability was fabricated by the spin coating method. The trilayer was composed of an ultrathin graphene (Gr) film sandwiched between a transparent and colorless polyimide (TCPI) layer and a methanesulfonic acid (MSA)-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer containing dimethylsulfoxide and Zonyl fluorosurfactant (designated as MSA-PDZ film). The introduction of solution-processable TCPI enabled the direct formation of high-quality graphene on organic surfaces with a clean interface. Stable doping of graphene with the MSA-PDZ film enabled tuning of the inherent work function and optoelectronic properties of the PEDOT:PSS films, leading to high figure of merit of ~70 in the as-fabricated TEs. Particularly, from multivariate and repetitive harsh environmental tests (T ≈ -50 to 90 oC, over 90 RH%), the TCPI/Gr heterostructure exhibited excellent tolerance to mechanical and thermal stresses and gas barrier properties that protected the MSA-PDZ film from exposure to moisture. Owing to the synergetic effect from the TCPI/Gr/MSA-PDZ anode structure, the TCPI/Gr/MSA-PDZ-based polymer light-emitting diodes (PLEDs) showed highly improved current and power efficiencies with maxima as high as 20.84 cd/A and 22.92 lm/W, respectively (comparable to those of indium-tin-oxide-based PLEDs), in addition to much-enhanced mechanical flexibility.
更多
查看译文
关键词
flexible transparent electrodes,graphene,colorless polyimide,organic thin film,operational stability,flexible organic devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要