Hypothermic Oxygenated Machine Perfusion Alleviates Donation After Circulatory Death Liver Injury Through Regulating P-selectin-dependent and -independent Pathways in Mice.

TRANSPLANTATION(2019)

引用 6|浏览17
暂无评分
摘要
Background. Hypothermic oxygenated machine perfusion (HOPE) has been shown to improve the quality of liver donation after circulatory death (DCD) compared to cold storage (CS). However, the mechanism by which HOPE works is unclear. In this study, a mouse liver HOPE system was developed to characterize the role of P-selectin in the protective effect of HOPE on DCD livers. Methods. A warm ischemia model of the liver and an isolated perfused liver system were established to determine a suitable flow rate for HOPE. Perfusate and tissue samples from wild-type and P-selectin knockout (KO) mice were used to determine liver function, apoptosis and necrosis rates, deoxyribonucleic acid injury and oxidative stress levels, leukocyte and endothelial cell activation, and inflammatory reactions. Results. A mouse liver HOPE system was successfully established. HOPE at flow rates between 0.1 and 0.5 mL/min . g were shown to have a protective effect on the DCD liver. P-selectin KO improved the quality of the DCD liver in the CS group, and reduction of P-selectin expression in the wild-type HOPE group had similar protective effects. Moreover, there was a reduction in the degree of oxidative stress and deoxyribonucleic acid injury in the P-selectin KO HOPE group compared with the P-selectin KO CS group. Conclusions. We established a mouse HOPE system and determined its suitable flow. We also proved that P-selectin deficiency alleviated DCD liver injury. HOPE protected the DCD liver through regulating P-selectin-dependent and -independent pathways.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要