$N$ sampling phase-locked loop "/>

A 28-nm 75-fsrms Analog Fractional- $N$ Sampling PLL With a Highly Linear DTC Incorporating Background DTC Gain Calibration and Reference Clock Duty Cycle Correction

IEEE Journal of Solid-State Circuits(2019)

引用 86|浏览20
暂无评分
摘要
An analog fractional- $N$ sampling phase-locked loop (PLL) is presented. It achieves 75-fs rms jitter, integrated from 10 kHz to 10 MHz, and a −249.7-dB figure of merit (FoM) at the fractional- $N$ mode with a 52-MHz reference clock. The measured fractional spur is less than −64 dBc across the 5.5–7.3-GHz output frequency band. The PLL employs digital-to-time converter (DTC)-based sampling PLL architecture, high linearity DTC design techniques, background DTC gain calibration, and reference clock duty cycle correction (DCC) to improve the integrated phase noise (IPN) and fractional spur. This design meets the performance requirement of the 5G cellular 64-quadratic-amplitude modulation (QAM) standard in the 28-/39-GHz band, supporting $2 \times 2$ multi-in multi-out (MIMO). This paper, implemented in a 28-nm CMOS process, is integrated in a 5G millimeter-wave cellular transceiver. This PLL consumes 18.9 mW and occupies 0.45 mm 2 .
更多
查看译文
关键词
Phase locked loops,Clocks,Voltage-controlled oscillators,Calibration,Jitter,Gain,5G mobile communication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要