Cosmic-ray transport from AMS-02 B/C data: benchmark models and interpretation

arXiv: High Energy Astrophysical Phenomena(2019)

引用 1|浏览0
暂无评分
摘要
This article aims at establishing new benchmark scenarios for Galactic cosmic-ray propagation in the GV-TV rigidity range, based on fits to the AMS-02 B/C data with the USINE v3.5 propagation code. We employ a new fitting procedure, cautiously taking into account data systematic error correlations in different rigidity bins and considering Solar modulation potential and leading nuclear cross-section as nuisance parameters. We delineate specific low, intermediate, and high-rigidity ranges that can be related to both features in the data and peculiar microphysics mechanisms resulting in spectral breaks. We single out a scenario which yields excellent fits to the data and includes all the presumably relevant complexity, the BIG model. This model has two limiting regimes: (i) the SLIM model, a minimal diffusion-only setup, and (ii) the QUAINT model, a convection-reacceleration model where transport is tuned by non-relativistic effects. All models lead to robust predictions in the high-energy regime ($\gtrsim10$GV), i.e. independent of the propagation scenario: at $1\sigma$, the diffusion slope $\delta$ is $[0.43-0.53]$, whereas $K_{10}$, the diffusion coefficient at 10GV, is $[0.26-0.36]$kpc$^2$Myr$^{-1}$; we confirm the robustness of the high-energy break, with a typical value $\Delta_h\sim 0.2$. We also find a hint for a similar (reversed) feature at low rigidity around the B/C peak ($\sim 4$GV) which might be related to some effective damping scale in the magnetic turbulence.
更多
查看译文
关键词
cosmic ray transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要