Cathelicidin is a "fire alarm", generating protective NLRP3-dependent airway epithelial cell inflammatory responses during infection with Pseudomonas aeruginosa.

PLOS PATHOGENS(2019)

引用 33|浏览41
暂无评分
摘要
Pulmonary infections are a major global cause of morbidity, exacerbated by an increasing threat from antibiotic-resistant pathogens. In this context, therapeutic interventions aimed at protectively modulating host responses, to enhance defence against infection, take on ever greater significance. Pseudomonas aeruginosa is an important multidrug-resistant, opportunistic respiratory pathogen, the clearance of which can be enhanced in vivo by the innate immune modulatory properties of antimicrobial host defence peptides from the cathelicidin family, including human LL-37. Initially described primarily as bactericidal agents, cathelicidins are now recognised as multifunctional antimicrobial immunomodulators, modifying host responses to pathogens, but the key mechanisms involved in these protective functions are not yet defined. We demonstrate that P. aeruginosa infection of airway epithelial cells promotes extensive infected cell internalisation of LL-37, in a manner that is dependent upon epithelial cell interaction with live bacteria, but does not require bacterial Type 3 Secretion System (T3SS). Internalised LL-37 acts as a second signal to induce inflammasome activation in airway epithelial cells, which, in contrast to myeloid cells, are relatively unresponsive to P. aeruginosa. We demonstrate that this is mechanistically dependent upon cathepsin B release, and NLRP3-dependent activation of caspase 1. These result in LL-37-mediated release of IL-1 and IL-18 in a manner that is synergistic with P. aeruginosa infection, and can induce caspase 1-dependent death of infected epithelial cells, and promote neutrophil chemotaxis. We propose that cathelicidin can therefore act as a second signal, required by P. aeruginosa infected epithelial cells to promote an inflammasome-mediated altruistic cell death of infection-compromised epithelial cells and act as a fire alarm to enhance rapid escalation of protective inflammatory responses to an uncontrolled infection. Understanding this novel modulatory role for cathelicidins, has the potential to inform development of novel therapeutic strategies to antibiotic-resistant pathogens, harnessing innate immunity as a complementation or alternative to current interventions. Author summary Lung infections are a common cause of death worldwide. As the threat of antibiotic-resistance becomes realised, new approaches are needed to treat disease-causing bacteria, such as multidrug-resistant Pseudomonas aeruginosa. Treatments that could enhance the body's most effective natural defences can overcome antibiotic-resistance issues and/or complement existing therapies. Antimicrobial Host Defense Peptides, such as human LL-37, can kill microbes, but also have vital roles in clearing lung infections by modifying naturally-occurring defenses. Understanding these immunomodulatory activities is key to harnessing their potential. Airway lining cells have important barrier roles, but, if infected, these compromised cells must be removed and signal danger, to prevent harmful bacteria establishing a protected site and proliferating. We show that when Pseudomonas aeruginosa infects these cells, LL-37 can provide a second signal, acting like a fire alarm, instructing the compromised cells to signal the danger, to recruit host defence cells to the site, and to activate their own altruistic death. We demonstrate the mechanism of this process, from bacterial and host cell perspectives, occurring by activation of an intracellular sensing platform (the NLRP3 inflammasome) with a novel synergy between the infection and the impact of LL-37, with implications for innovative new approaches to treat multi-drug resistant infections.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要