Concurrent Validity of Field-Based Diagnostic Technology Monitoring Movement Velocity in Powerlifting Exercises

JOURNAL OF STRENGTH AND CONDITIONING RESEARCH(2021)

引用 23|浏览15
暂无评分
摘要
Mitter, B, Holbling, D, Bauer, P, Stockl, M, Baca, A, and Tschan, H. Concurrent validity of field-based diagnostic technology monitoring movement velocity in powerlifting exercises. J Strength Cond Res 35(8): 2170-2178, 2021-The study was designed to investigate the validity of different technologies used to determine movement velocity in resistance training. Twenty-four experienced powerlifters (18 male and 6 female; age, 25.1 +/- 5.1 years) completed a progressive loading test in the squat, bench press, and conventional deadlift until reaching their 1 repetition maximum. Peak and mean velocity were simultaneously recorded with 4 field-based systems: GymAware (GA), FitroDyne (FD), PUSH (PU), and Beast Sensor (BS). 3D motion capturing was used to calculate specific gold standard trajectory references for each device. GA provided the most accurate output across exercises (r = 0.99-1, ES = -0.05 to 0.1). FD showed similar results for peak velocity (r = 1, standardized mean bias [ES] = -0.1 to -0.02) but considerably less validity for mean velocity (r = 0.92-0.95, ES = -0.57 to -0.29). Reasonably valid to highly valid output was provided by PU in all exercises (r = 0.91-0.97, ES = -0.5 to 0.28) and by BS in the bench press and for mean velocity in the squat (r = 0.87-0.96, ES = -0.5 to -0.06). However, BS did not reach the thresholds for reasonable validity in the deadlift and for peak velocity in the squat, mostly due to high standardized mean bias (ES = -0.78 to -0.63). In conclusion, different technologies should not be used interchangeably. Practitioners who require negligible measurement error in their assessment of movement velocity are advised to use linear position transducers over inertial sensors.
更多
查看译文
关键词
velocity-based training, GymAware, FitroDyne, PUSH, Beast, measurement error
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要